Flood Risk Assessment on two Greek island ports under the impact of rising sea levels

Chatzistratis Dimitris Monioudi Isavela Chalazas Thodoros Papaioannou George Moschopoulos Kostas Velegrakis Adonis Polydoropoulou Amalia

Introduction

Ports Importance

- **Crucial nodes** in the supply network
- 80 % of merchandise trade globally (UNCTAD, 2022)
- Critical infrastructures at small islands (lifelines) (Monioudi et al, 2018)

Ports exposure to marine hazards

- Harbor functionality
- Terminal and vessel damaging
- Constraints on vessel handling and berthing
- Disruptions on supply chains

Under CV & C exposure is projected to increase (Camus et al, 2019)

Introduction

Extreme Sea Levels (ESLs) equal to the summation of:

- Rising Mean Sea Level (RMSL)
- Astronomical Tide
- Meteorological tide (storm surge)
- Wave set up (approximated as 0.2 of H_s)

RCP4.5 (moderate) & RCP8.5 (pessimistic) scenarios from IPCC

2 Reference Years: 2050 & 2100

(Vousdoukas et al, 2018)

Study the exposure to flood risk under the impact of CV & C at two island ports of the NE Aegean Sea

Study Area

- Chios Port
- ~150000 arrivals
- Pythagorio Port, Samos
- ~ 17000 departures
- (Papaioannou et al, 2022)

- Hydrodynamic modelling:
- LISFLOOD-FP (Bates & de Roo, 2000)
- 2-D simulations on structured grid
- Used in coastal flood risk applications and port inundation estimation (e.g Bove et al, 2020)
- Hydrodynamic forcing at boundaries:
- **ESL** = 1.2 m (2050) and 1.65 m (2100), 1-100 yr event
- Storm duration set to 10 hours
- High Resolution (2x2) DEM from Greek Cadastre
- Manning friction coefficient from Coastal Zone Land Use/Land Cover layer from https://land.copernicus.eu/en/products/coastal-zones

2050 : 60300 m² inundated, Max flood extent = 165 m

Flood Depth (m), Flood Depth (m), ESL = 1.61 m ESL = 1.2 m 1.34 1.6 0.65 0.8 200 m 100 200 m 0.1 0.1

This research was conducted within the framework of the RESPORTS project. The research project titled 'Enhancing resilience for Greek ports – RESPORTS' is being implemented within the framework of the Natural Environment and Innovative Actions 2022/Priority Axis 3: 3 Research and Application' program. It is funded by the Green Fund and beneficiary is the Department of Shipping Trade and Transport of the University of the Aegean

2100: 107000 m² inundated,

Max flood Extent = 180 m

2050: Entire harbor are inundated Max flood extent: 55 m

2100: Max flood extent 65 m Coastal road inundation

- High Resolution topographic data crucial on detailed flood modelling
- LISFLOOD-FP can support flood risk assessment on ports
- Both ports are highly exposed to flood risk with adverse consequences also for the local communities
- Urgency for adaptation measures and enhancement of port resiliency

References

- Bates, Paul D., De Roo, A.P.J., 2000. A simple raster-based model for flood inundation simulation. J. Hydrology 236, 54-77 doi.org/10.1016/S0022-1694(00)00278-X
- Camus P, et al 2019 Probabilistic assessment of port operation downtimes under climate change. Coastal Engineering 147:12–24. <u>https://doi.org/10.1016/j.coastaleng.2019.01.007</u>
- Monioudi IN et al 2018. Climate change impacts on critical international transportation assets of Caribbean Small Island Developing States (SIDS): the case of Jamaica and Saint Lucia. Reg Environ Change 18. <u>https://doi.org/10.1007/s10113-018-1360-4</u>
- Papaioannou, G., et al 2023. Analyzing the Passenger Traffic Demand Patterns of Greek Ferry Terminals. Transportation Research Procedia 72, 2920-2927 <u>https://doi.org/10.1016/j.trpro.2023.11.838</u>
- UNCTAD, 2022. Review of Maritime Transport. UNCTAD/RMT/2022. United Nations Publications, New York, USA. https://unctad.org/publication/review-maritime-transport-2022. Accessed 18 Jan 2024

Vousdoukas MI, et al 2018. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat Commun 9:2360. <u>https://doi.org/10.1038/s41467-018-04692-w</u>

